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This paper considers the self-similar problem of diffusive evaporation
of a liquid from the flat surface of a solution of great depth with due
regard to the temperature distribution. An exact solution is given.

The question of the evaporation of a liquid from the
surface of a solution is of interest for chemistry and
chemical technology, as well as for geophysics, In
comparison with the evaporation of a pure liquid the
evaporation from the surface of a solution has several
significant special features. First, the saturated vapor
concentration on the surface of the solution [1] depends
not only on the temperature, as in the case of g pure
liguid, but also on the concentration of the substance.
Second, if the dissolved substance is nonvolatile the
vapor-solution phase-transition boundary is impene-
trable for it, and as the boundary advances, the sub-
stance must move deeper into the solution, Since the
vapor concentration on this boundary depends on the
concentration of dissolved substance, the transfer of
mass of the substance in the solution affects the evap-
oration process in turn.

Even in the purely diffusive stage the process of
evaporation is nonlinear, generally speaking. In actual
conditions this process is very often accompanied by
convective effects, which make its mathematical des~
‘scription even more complicated. In view of this, it is
of great importance to select reasonable limiting cases
which can be solved analytically.

In this paper we will consider the limiting case of
purely diffusive evaporation into a gaseous medium
from the surface of a solution of great ("infinitely
great") depth, The concentrations of vapor and dis-
solved substance and the temperatures of the vapor-
gas mixture and solution of the initial instant are as-
sumed constant. The evaporation calculated by this
method is obviously the minimum possible for the given
conditions.

Let the vapor-air mixture at the initial instant oc-
cupy the upper half of the space and the solution the
lower half, andlet the axis 0x be directed intothe solu-
tion, We will assume that the dissolved substance is
nonvolatile, Then the vapor-solution phase-transition
boundary is impenetrable for it, and as the boundary
advances, the dissolved substance must diffuse into
the depth of the solution. Hence, the considered pro-
cess is described by a system of equations of diffusion
of vapor and substance in the solution and heat-conduc-
tion equations (for the vapor-air mixture and solution)
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The required solutions of these equations must sat-
isfy uniform initial conditions and conditions at infinity

q(x, 0)=q(— o, 1) =4y
T(x, 0)=T(— o, H=T,
c(x, 0) =c(oo, ) =g,

B(x, 0)=0(w, £)=0,, [(0)=0, (3)

and also a number of conditions on the moving evapor-
ation boundary I (t).

First, on this boundary the condition of conserva-
tion of mass of the solvent, the calorimetric relation~
ship, and the condition of equality of the phase tem-
peratures (see [2], for instance) must be satisfied:
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T, t)y=8( t)=T,. (4)

Second, on the boundary I(t) the vapor concentra-
tion must be saturated., For a solution the saturated
vapor concentration depends not only on the tempera-
ture, as in the case of a pure liquid, but also on the
concentration of dissolved substance [1]. At not very
high concentrations of dissolved substance this depen-
dence is expressed by the Raoult law [1]:

The dependence of the concentration of saturated
vapor of the solvent on the temperature qg(T) wiil be
approximated by the Clapeyron-Clausius formula [1,
21
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In addition to the relationships (4) and (5) on the
phase-transition surface one other specific condition
must be satisfied in the case of a solution—the condi-
tion of balance of mass of the dissolved substance. It
can be obtained, for example, in the following way.
We consider the change in mass of the dissolved sub-
stance m (per unit area) enclosed between sections
x = X¢ = const and x =1 (t) [x4 >!(t)]. Since the phase-
transition boundary is impenetrable for the dissolved
substance, the change in its mass must be due to en-
try of dissolved substance through the section X = x;:

dm ﬁ’
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On the other hand, by using the first equation of
(2), we find

c(x, HYdx =
If) I(t)
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If we equate these relationships we obtain the fol-
lowing condition of balance of mass of the dissolved
substance:

dt c, ) o

dt Dy dc
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It is obvious that the above equations and boundary
conditions also describe the condensation of liquid on
the surface of a solution, This process occurs when

ad,t) < qo.

We find the solution of the posed problem. On di-
mensional analysis of the characteristic parameters
of the problem in accordance with [3], we come to the
conclusion that it is self-similar. Its solution has the
form

q(x, t)y = A, + B,eric(— x/2/ Db,
c(x, t) = A, + Byeric (x/2V D,1),
T(x, ) = F,+4E, erfc(—x2 V% D),
0(x, 1) =F,+ E,erfc (/2 V %4 ),
1()=2Vat. ®)

The constant coefficients in (8) are found from con-
ditions 3), (4), and (7):
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To obtain the equation to determine the parameter
« we must use formula (5) in conjunction with (6) and
substitute in it the expressions for cg = ¢(, t),qg =
=q(,t), Tg = T(,t) from (8) and (9). It has the form
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Here the relationship qg(Tg) is given by formula (6),
and Tg is expressed in the following way:

Ts=60—[ipL V:m[l + erf (l/ )] +
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We note that the considered problem retains its
self-similarity when the dependence of the saturated
vapor concentration on the temperature and concentra-
tion on the phase-transition boundary has a more gen-
eral form

1
+ M (B, —T,) exp (

g, =T, c), (12)

where f(Tg, ¢g) is an arbitrary function of Tg and cg.

As formulas (8) show, the values of cg = ¢(l, t),
a(,t), Tg = T, t) = 6 {, t) for the considered process
are constant, In the case of evaporation c(,t) > cy,
ad,t) < ag(Tg) (I ~ keo) and in the case of condensation
the inequalities are reversed.

We will now consider some special cases following
from the previously obtained general relationships.

Let 6y = T and the temperature of the evaporation
(condensation) surface be kept constant by compensa~-
tion of the heat absorbed (released) on this surface.
Then F;= Fy= Ty, E; = E, =0, and the equation for the
determination of o becomes
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We recall that in the case of evaporation of a pure
liguid formula (13) reduces to

Y exp(y/m) 11+ erf (g V)] = b,
and 131
b* = [qs (To) —qo]/'P, = l/ mz*/D.

We will now consider another case where 8, = T,
and at T) the solvent is fairly involatile. Then it is
clear from physical considerations that the tempera-
ture of the interface T(,t) = Tg will not differ greatly
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from Ty Hence, the expression for qg(Tg) can be ex-
panded in a series of powers of Tg ~ T, and the first
terms of the expansion taken as

45 (Ts) = g, (T) +v(Ts —T}). (14)

In this case q, ¢, T, and 0 can be found without re~
sorting to the solution of the general equation for «
(10), if we use the method of successive approxima-
tions. In the zero approximation we assume that the
interface is stationary. Then, using (3)—~(5) and (12),
we obtain

X
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Substituting in the first condition (4) the expression
for q from (15) we have in the first approximation

VawD = h. (16)

Hence, for c(x,t) and c{,t) we obtain in the same
approximation

c(x, == c, [1 + V' D/D, heric (2 V Dby,
c(l, ty=c,[1 4 V D/D,h}. 1)

Expressions (16) and (17) are obviously applicable
in the case where the condition vD/Dxh « 1 is satis-
fied.

Since for the diffusion of vapor in air D ~ 10~ em?/
/sec and for a substance dissolved in a liquid Dy =
¥ 10~% em?/sec, then vD/Dx ~ 10% and if the expres-
sions are to be applicable h must be <« 10~2,

In the case of evaporation of a pure liquid the con-
dition of applicability of the linear formula of the form
(16) is the satisfaction of a much stricter inequality
hleo +. 1. The value of h~ b and when qg > qy, b =
~ (1 - keg)gg/p.

Thus, in the case of evaporation of a liquid from
the surface of a solution the nonlinearity of the pro-
cess is manifested in the much smaller values of qg/p
than in the case of evaporation of a pure liquid. This
is illustrated by the dependences of y and y»* on bx =
= qg/p, shown in the table, These dependences were
obtained for the case of isothermic evaporation [from
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formulas (13) and (137)]. It was assumed in this case
that qg = 0, and the parameter keg in formula (13) is
0.1.

Dependence of y and y, on
by Calculated from Egs.
(13) and (13") with q¢ = 0,

keo = 0.1
b.owggle , U ’ y
1 |
103 10— 0.9-10—
2.10—2 2-10—2 1.4.10—2
3-1072 3-10—2 1.7-16—
4-10—* 3.9-10— 1.9-10—2
5.10—2 4.9-10— 2.0-10-2

NOTATION

q(x, t) is the vapor concentration; c(x, t) is the con-
centration of dissolved substance (mass/volume);
T(x,t), 0 (%,t) is the temperatures of vapor-gas mix-
ture and solution; D is the diffusion coefficient in
vapor-gas mixture; Dy is the diffusion coefficient in
liquid; x, x«are the thermal diffusivities in vapor-gas
medium and liquid; A, A x are the thermal conductivities
in vapor-gas medium and liquid; p is the density of
liquid solvent; L is the specific heat of evaporation of
liquid; x = [(t) is the coordinate of evaporation (con-
densation) boundary; qg(T) is the concentration of sat-
urated vapor of solvent at temperature T; qg, ¢ is the
concentration of vapor and dissolved substance at in-
finity; T, 6¢arethetemperaturesof vapor-gas medium
and solution at infinity; Mg and Mg are the molecular
weights of solvent and dissolved substance; M is the
molecular weight of solvent and dissolved substance;
M is the molecular weight of vapor; R is the gas con-
stant; K = Mg/pMg; G = LM/R.
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